JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 4, November 2012

ROBUSTLY TRANSITIVE SETS WITH SHADOWING

DAEJUNG KIM*

ABSTRACT. Let f be a diffeomorphism of a closed C^{∞} manifold M. We show that C^1 -generically, if f has the shadowing property on a robustly transitive set, then it is hyperbolic.

1. Introduction

Let M be a closed C^{∞} manifold, and denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. Denote by $\operatorname{Diff}(M)$ the space of diffeomorphisms of M endowed with the C^1 -topology. Let $f \in \operatorname{Diff}(M)$, and let P(f) be the set of periodic points of f. Let Λ be a closed f-invariant set. Denote by $f|_{\Lambda}$ the restriction of f to a subset Λ of M. For $\delta > 0$, a sequence of points $\{x_i\}_{i=a}^b \subset M \ (-\infty \leq a < b \leq \infty)$ is called a δ -pseudo orbit of $f \in \operatorname{Diff}(M)$ if $d(f(x_i), x_{i+1}) < \delta$ for all $a \leq i \leq b - 1$.

We say that Λ is shadowing for f (or $f|_{\Lambda}$ has the shadowing property) if for every $\epsilon > 0$, there is a $\delta > 0$ such that for any δ -pseudo orbits $\{x_i\}_{i \in \mathbb{Z}}$ of f contained in Λ can be ϵ -shadowed by a point $y \in M$. The notion of pseudo orbits often appears in several methods of the modern theory of dynamical system ([9]). Moreover, the pseudo orbit shadowing property usually plays an important role in the investigation of stability theory and ergodic theory.

We say that Λ is *transitive* if there is a point $x \in \Lambda$ such that $\omega(x) = \Lambda$. A diffeomorphism f is said to be *robustly transitive* if every diffeomorphism in a C^1 neighborhood of f has a dense orbit. A rotation map f_{α} on the unit circle \mathbb{S}^1 is transitive if α is irrational, but f_{α} is not robustly transitive. A closed invariant set Λ is said to be *locally maximal* if there is a compact neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$.

Received August 14, 2012; Accepted October 10, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 34D10, 37C20, 37C50.

Key words and phrases: C^1 -generic, hyperbolic, shadowing, transitive set, robustly transitive set.

Daejung Kim

DEFINITION 1.1. An invariant compact set Λ is robustly transitive (or $f|_{\Lambda}$ is robustly transitive) if there are a C^1 -neighborhood $\mathcal{U}(f)$ of f and a compact neighborhood U of Λ such that

- (a) $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$, (b) for any $g \in \mathcal{U}(f)$, $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is transitive, where $\Lambda_g(U)$ is called the continuation of Λ .

In dimension one, there do not exist robustly transitive diffeomorphisms: the diffeomorphisms with finitely many hyperbolic periodic points are open and dense in $\text{Diff}(\mathbb{S}^1)$. On the other hand, for twodimensional diffeomorphisms, every robustly transitive set is a basic set; that is, it is transitive and periodic points are dense. In particular, every robustly transitive surface diffeomorphism is Anosov and the unique surface which supports such diffeomorphisms is the torus \mathbb{T}^2 (for more detail, see [8]). As we can see in [5], the robustly transitive sets in dimension 3 are generically partially hyperbolic. Moreover, Bonatti et al. ([2]) proved that every C^1 -robustly transitive diffeomorphism on a finite dimensional manifold has dominated splitting. There are many nonhyperbolic transitive sets such as skew products, Derived from Anosov, and deformations of the time- τ map X_{τ} of the flow of a transitive Anosov vector field X.

A closed invariant set Λ is called *hyperbolic* for f if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist constants C > 0, and $0 < \lambda < 1$ such that $\|Df^n|_{E(x)}\| \leq C\lambda^n$ and $\|Df^{-n}|_{F(f^n(x))}\| \leq C\lambda^n$ for all $x \in \Lambda$ and $n \geq 0$. We say that f is Anosov if M is hyperbolic for f.

We say that a subset $\mathcal{R} \subset \text{Diff}^1(M)$ is residual if \mathcal{R} contains the intersection of a countable family of open and dense subsets of $\text{Diff}^1(M)$; in this case \mathcal{R} is dense in Diff¹(M). A dynamic property P is said to be C^1 -generic if P holds for all diffeomorphisms which belong to some residual subset of $\text{Diff}^1(M)$. A set Λ is a basic set if Λ is locally maximal and $f|_{\Lambda}$ is transitive. It is easy to see that if Λ is hyperbolic basic set, then the periodic points are dense therein. Of course, every elementary set is a basic set.

In this paper, we prove that C^1 -generically, if f has the shadowing property on a robustly transitive set $\Lambda \subset M$, then Λ is hyperbolic for f. More precisely, we prove the following theorem.

THEOREM 1.2. There exists a residual subset \mathcal{G} of $\text{Diff}^1(M)$ such that if $f \in \mathcal{G}$ has shadowing property on a robustly set $\Lambda \subset M$, then Λ is hyperbolic for f.

726

It is well known that if p is a hyperbolic periodic point of f with period k then the sets

$$W^{s}(p) = \{ x \in M : f^{kn}(x) \to p \text{ as } n \to \infty \},\$$

and

$$W^{u}(p) = \{x \in M : f^{-kn}(x) \to p \text{ as } n \to \infty\}$$

are C^1 -injectively immersed submanifolds of M. Let p, q be hyperbolic periodic points of f. We say that p and q are homoclinically related, and write $p \sim q$ if $W^s(p)$ intersects transversely $W^u(q)$, and $W^u(p)$ intersects transversely $W^s(q)$. It is clear that if $p \sim q$ then index(p) = index(q), that is, dim $W^s(p) = \dim W^s(q)$.

To prove our main theorem, we will use the following result due to $Ma\tilde{n}e([8])$.

LEMMA 1.3. Let $f|_{\Lambda}$ be robustly transitive. If there are a C^1 - neighborhood $\mathcal{U}(f)$ of f and a compact neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, any periodic point of g in $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is hyperbolic and have the same index, then there exists a C^1 -neighborhood $\mathcal{V}(f) \subset \mathcal{U}(f)$ of f such that for any $g \in \mathcal{V}(f), \Lambda_g(U)$ is hyperbolic.

To prove Theorem 1.2, it is enough to show the following proposition if we apply Lemma 1.3.

PROPOSITION 1.4. For C^1 -generic f, if f has shadowing property on a robustly transitive set $\Lambda \subset M$, then there are a C^1 -neighborhood $\mathcal{U}(f)$ of f and a compact neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, any periodic point of $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is hyperbolic and has the same index.

2. Proof of Theorem 1.2

Let M be as before, and let $f \in \text{Diff}(M)$. Let p be a hyperbolic point of a diffeomorphism f. For some $\epsilon(p) > 0$, we define the so-called local stable manifold $W^s_{\epsilon(p)}(p)$ and the local unstable manifold $W^u_{\epsilon(p)}(p)$ as

$$W^{s}_{\epsilon(p)}(p) = \{ y \in M : d(f^{n}(p), f^{n}(y)) \le \epsilon(p) \ for \ n \ge 0 \}$$

and

$$W^u_{\epsilon(p)}(p) = \{ y \in M : d(f^n(p), f^n(y)) \le \epsilon(p) \text{ for } n \le 0 \}.$$

Note that $W^s_{\epsilon(p)}(p) \subset W^s(p)$ and $W^u_{\epsilon(p)}(p) \subset W^u(p).$

Daejung Kim

To prove the proposition, we need some lemmas.

LEMMA 2.1. Let Λ be a transitive set. Suppose that f has the shadowing property on Λ . Then for any hyperbolic periodic points $p, q \in \Lambda$,

 $W^{s}(p) \cap W^{u}(q) \neq \emptyset$ and $W^{u}(p) \cap W^{s}(p) \neq \emptyset$.

Proof. In this proof, we will show that $W^u(p) \cap W^s(q) \neq \emptyset$. Since p and q are hyperbolic saddles, there are $\epsilon(p) > 0$ and $\epsilon(q) > 0$ such that both $W^s_{\epsilon(p)}(p)$ and $W^u_{\epsilon(q)}(q)$ are C^1 -embedded disks, and such that if $d(f^n(x), f^n(p)) \leq \epsilon(p)$ for $n \geq 0$, then $x \in W^u_{\epsilon(q)}(q)$. Set $\epsilon = \min\{\epsilon(p), \epsilon(q)\}$, and let $0 < \delta = \delta(\epsilon) < \epsilon$ be the number of the shadowing property of $f|_{\Lambda}$ with respect to ϵ . To simplify, we assume that f(p) = p and f(q) = q. Since Λ is transitive, there is a point $x \in \Lambda$ such that $\omega(x) = \Lambda$. We can choose $l_1 > 0$ and $l_2 > 0$ such that

$$d(p, f^{l_1}(x)) < \delta$$
, and $d(q, f^{l_2}(x)) < \delta$.

Without loss of generality, we may assume that $l_2 > l_1$. Take k > 0 such that $l_2 = l_1 + k$. Then we get the finite δ -pseudo orbit

$$\xi' = \{p, f^{l_1}(x), f^{l_1+1}(x), \dots, f^{l_2-1}(x), q\}$$

Extend the finite δ -pseudo orbit $\xi = \{x_i\}_{i \in \mathbb{Z}}$ as follows; Put

$$\begin{cases} x_i = f^i(p) \text{ for } i \leq 0, \\ f^{l_1+i}(x) = x_i \text{ for } 1 \leq i < l_2, \\ f^{l_2}(x) = x_{l_1+k} \\ f^{l_2+i}(x) = x_{l_1+k+i} \text{ for all } i \geq 0. \end{cases}$$

Then

There

$$\xi = \{\dots, p, p, f^{l_1}(x), f^{l_1+1}(x), \dots, f^{l_2}(x), q, q, \dots\}$$
$$= \{\dots, x_{-1}, x = (p), x_1, \dots, x_{l_1+k-1}, x_{l_1+k}, x_{l_1+k+1}, \dots\}$$

is a δ -pseudo orbit. It is clear that $\xi \subset \Lambda$. Since f has the shadowing property on Λ , there is a point $y \in M$ such that $d(f^i(y), x_i) < \epsilon$ for all $i \in \mathbb{Z}$. Then we see that

$$y \in W^u_{\epsilon}(p) \text{ and } f^{l_1+k}(y) \in W^s_{\epsilon}(q).$$

fore $y \in W^u(p) \cap W^s(q)$. Thus $W^u(p) \cap W^s(q) \neq \emptyset.$

LEMMA 2.2. (Kupka-Smale) There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_1$, every periodic point of f is hyperbolic, and all their invariant manifolds are transverse.

728

End of the Proof of Theorem 1.2. Let \mathcal{G}_1 be the set of Kupka-Smale diffeomorphisms f in Diff¹(M). It follows from Lemma 2.1 and $f \in \mathcal{G}_1$ that if f has shadowing property on Λ , then every periodic point in Λ has the same index.

Take a countable basis $\beta = \{U_n\}_{n \in \mathbb{N}}$ of M such that the union of two elements in β belongs to β . For each $U_n \in \beta$, we define \mathcal{H}_n by the set of all diffeomorphism f has a C^1 -neighborhood $\mathcal{U}(f)$ of f with the following properties: for any $g \in \mathcal{U}(f)$, if the maximal g-invariant set $\Lambda_g(U_n)$ in U_n , and g has two hyperbolic periodic points in $\Lambda_g(U_n)$ with different indices, then f has two hyperbolic periodic points in Λ with different indices. Then it is clear that \mathcal{H}_n is open in Diff(M) for each $n \in \mathbb{N}$.

Let $\mathcal{N}_n = \operatorname{Diff}(M) \setminus \overline{\mathcal{H}_n}$. To show that \mathcal{H}_n is dense in $\operatorname{Diff}^1(M)$ for each $n \in \mathbb{N}$, we suppose that there is $f \notin \overline{\mathcal{N}_n}$. Then we can find a C^1 -neighborhood $\mathcal{U}(f)$ of f such that for every $g \in \mathcal{U}(f)$, g has two hyperbolic periodic points $p_g, q_g \in \Lambda_g(U_n)$ with different indices. Since p_g, q_g are hyperbolic periodic orbits for g, by the stability theorem, fhas two hyperbolic periodic points $p, q \in \Lambda$ with different indices. Thus $g \in \mathcal{H}_n$. This verifies that $\mathcal{H}_n \cup \mathcal{N}_n$ is C^1 dense in $\operatorname{Diff}(M)$. Let $\mathcal{G}_2 =$ $\bigcap_{n \in \mathbb{N}} (\mathcal{H}_n \cup \mathcal{N}_n)$. Then \mathcal{G}_2 is C^1 -residual in $\operatorname{Diff}(M)$.

Put $\mathcal{G} = \mathcal{G}_1 \cap \mathcal{G}_2$. Let $f \in \mathcal{G}$ and let $\Lambda \subset M$ be the robustly transitive set. Then there exists a basic element $U_{n_0} \in \beta$ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U_{n_0})$.

Suppose that Λ is not hyperbolic for f. Since Λ is the robustly transitive set, there are a C^1 -neighborhood $\mathcal{U}(f)$ of f and a compact neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, $g|_{\Lambda_{g(U)}}$ is transitive. Since Λ is nonhyperbolic, for $g \in \mathcal{U}(f)$, there are $p_g, q_g \in \Lambda_g(U) \cap P(g)$ with $\operatorname{index}(p_g) \neq \operatorname{index}(q_g)$. By the local stability theorem, there are uniquely $p, q \in \Lambda \cap P(f)$ such that $\operatorname{index}(p) \neq \operatorname{index}(q)$. By Lemmas 2.1 and 2.2, this is a contradiction to the fact that $f \in \mathcal{G}$. Thus any periodic point of $g \in \Lambda_g(U_{n_0})$ is hyperbolic and have the same index. Thus by Lemma 1.3, we see that $\Lambda_g(U_{n_0})$ is hyperbolic for g, and so Λ is hyperbolic for f. This completes the proof of Proposition 1.4.

Acknowledgments

This paper was supported by Daejeon Metropolitan Office of Education. It is a pleasure to thank Dr. Manseob Lee (Mokwon University) for useful discussion in composing this paper.

Daejung Kim

References

- C. Bonatti and L. J. Díaz. Nonhyperbolic transitive diffeomorphisms, Ann. Math. 143 (1996), 357-396.
- [2] C. Bonatti, L. J. Díaz, and E. Pujals. A C¹-generic dichotomy for diffeomorphsims: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158 (2003), 355-418.
- [3] C. Bonatti, L. J. Díaz, E. Pujals, and J. Rocha. Robust transitivity and heterodimensional cycles. Asterisque, 297 (2003), 187-222.
- [4] L. J. Díaz. Robust nonhyperbolic dynamics and heterodimensional cycles. Ergod. Th. Dynam. Sys. 15 (1995), 291-315.
- [5] L. J. Díaz, E. Pujals, and R. Ures. Partial hyperbolicity and robust transitivity. Acta Math. 183 (1999), 1-43.
- [6] K. Lee, and M. Lee, stably inverse shadowable transitive sets and dominated splitting, Proc. Amer. Math. Soc. 140 (2012), 217-226.
- [7] K. Lee, and X. Wen, Shadowable chain transitive sets of C¹-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), 21-28.
- [8] R. Mañé, An ergodic closing lemma, Ann. Math. $\mathbf{116}$ (1982), 503-540.
- [9] S. Y. Pilyugin, Shadowing in Dynamical Systems, Lect. Notes in Math., Vol. 1706, Springer, 1999.
- [10] M. Shub, Topologically transitive diffeomorphisms on T⁴, Lect. Notes in Math., Vol. 206, Springer, 1971.

*

Daejeon Science High School Daejeon 305-338, Republic of Korea *E-mail*: kimdj623@hanmail.net